
J. Fluid Mech. (1989), vol. 205, pp .  99-133 

Printed in Great Britain 
99 

Scalar transport and alpha-effect for a family of 
cat’s-eye flows 

By S. CHILDRESS’ AND A. M. SOWARD’ 
Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA 

School of Mathematics, The University, Newcastle upon Tyne, NEl 7RU, UK 

[Received 7 March 1988 and in revised form 3 February 1989) 

In  this paper we study advection-diffusion of scalar and vector fields for the steady 
velocity field 

(u,w,w) = (-, all. -&,K+). all. t,b = sinxsiny+6cosxcosy. 
aY 

If 6 > 0 the streamlines @ = constant form a periodic array of oblique cat’s-eyes 
separated by continuous channels carrying finite fluid flux. In the problems treated, 
advection dominates diffusion, and fields are transported both in thin boundary 
layers and within the channels. Effective transport of a passive scalar and the alpha- 
effect generated by interaction of the flow with a uniform magnetic field are 
examined. For the latter problem, we determine the alpha-matrix as a function of 6. 
Our results consist of (i) numerical solution of steady problems in the limit of large 
Reynolds number R with p = 6Ri held fixed and 0(1 ) ,  and (ii) analytic asymptotic 
solutions for large R,  obtained using the Wiener-Hopf technique, which are valid for 
large /3. The asymptotic method gives reliable values of the effective diffusion and of 
alpha-matrices down to p x 1.5. 

When /3 > 0 the transport and alpha-effect are greatly enhanced by flux down the 
channels. Consequently, the alpha-effect found here may have application to the 
construction of efficient fast dynamos, but this requires spatial dependence of the 
mean field and the inclusion of three-dimensional effects, as in the established fast- 
dynamo analysis with 6 = 0. 

1. Introduction 
1.1 ,  The scope of the paper 

A central problem of fluid kinematics concerns the advection and diffusion of passive 
scalar and vector fields in a given flow u(x,t). Problems of this kind arise in the 
calculation of average transport of a scalar field as a result of a fixed mean gradient 
and, for the case of an electrically conducting fluid, in the construction of kinematic 
dynamos utilizing an alpha-effect (as reviewed in e.g. Moffatt 1978). In  many 
problems of interest, moreover, advection is much stronger than diffusion, and the 
bulk properties of interest may arise in part from many small regions where diffusion 
is non-negligible. The calculation of the bulk properties from their ‘microscopic ’ 
origins is a notoriously difficult problem, turbulent diffusion a t  high Reynolds 
number being the extreme case. 

The simplest class of such problems is obtained when u is independent of time. 
Even for steady flows, the limit of large Reynolds number is not a simple one, 
because of the existence of diffusive boundary layers in the neighbourhood of certain 
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lines and surfaces. We shall, in the present paper, consider only the steady case. We 
shall study advection4iffusion for a steady flow which is independent of one 
coordinate ( z ) ,  but which (if the parameter K below is non-zero) has a non-trivial 
three-dimensional streamline pattern. In particular, when advection is dominant, 
there will exist a complicated set of boundary layers, localized near surfaces in three- 
dimensional space. 

The flow field is a one-parameter extension of a symmetric square-cell geometry, 
considered in the dynamo context by Roberts (1972). The velocity field of the 
extended flow is given by 

(1.la) 

where K is a constant and 

$ = sinxsin y+6cosxcos y (0 < 6 < 1). ( 1 . l b )  

A few remarks on the terminology and the geometry of the flow (1.1) are in order. 
We shall refer to the (x, y)-plane as horizontal and the z-direction as vertical. The 
stream function (1 .1  b)  defines a one-parameter, 6, family of steady flows independent 
of the vertical coordinate z. The Roberts (1972) flow corresponds to 6 = 0. Motion is 
confined to streamsurfaces $ = constant and consequently the streamline topology 
is not influenced by the second parameter K, which plays a passive role in our theory. 
(In the kinematic dynamo problem, it will be important that K + 0, for only in this 
case is the alpha-effect non-zero. In  the analysis of scalar transport, the z-component 
of (1.la) will play no role.) For the special case K = 4 2 ,  the motion (1.1) is the 
integrable case of the Beltrami flows considered by Dombre et al. (1986), obtained by 
setting one of the coefficients A ,  B,  G equal to zero. The case 6 = 0 defines the square- 
cell flow with plane boundaries $ = 0. A typical example of the case 6 non-zero is 
illustrated in figure 1 ,  which shows for 6 = 0.3 the streamsurfaces $ = constant 
projected onto the horizontal (x, y)-plane. When 6 > 0, the cellular motion is confined 
to the cat’s eyes, where 6 < 111.1 < 1. The separatrices, which bound these cat’s 
eyes, intersect a t  the points (x, y) = (mx,nx) for integer m,n,  and are identified by 
the streamsurfaces $ = ( - l)m+n6. The intersections (x, y) = (mx, nx) are stagnation 
points of the flow when 6 = 0,  but in general they are junction streamlines upon 
which the vertical velocity is ( -  l)m+flK6. Between the cat’s eyes, where < 6, 
motion is confined to open channels. In  each channel the horizontal motion has a 
mean part aligned with the vector ( 1 , l )  but alternating in sign from one channel to 
the next. As 6 increases the size of the cat’s eyes decreases. The directional property 
of the mean channel flow is clearly seen in the limit 6-t 1.  In that limit the eyes 
disappear and the remaining flow is unidirectional with motion defined by the stream 
function $ = cos (y--2). As we shall see, the symmetry about the direction 

i(+) = ( 1 , l )  ( 1 . 2 ~ )  

and the mutually orthogonal direction 

i(-) = (1,  - 1 )  (1.2b) 

are central to our analysis. Also, anticipating interest in the 2 x 2 diffusion and alpha- 
matrices, D and a (see (1.8) and (1.20) below), we introduce the dyadics 

defined by them. 

(1 .24 
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FIQURE 1. Streamlines of the flow (1.1)  for 6 = 0.3. The channel is bounded by 
the streamlines @ = kO.3. 

As already indicated, two distinct physical problems will be discussed in the paper. 
The main problem, which derives from the kinematic dynamo (Moffatt 1978; 
Zel’dovich, Ruzmaikin & Sokoloy 1981), provided the original motivation for the 
work described here. This magnetic problem is, in our asymptotic theory, reduced to 
the study of two heat conduction equations (1.3) and (1.14) below, involving two 
scalars A and B. Fortunately these two equations can be solved successively, in two 
stages. The first stage consists of solving the homogeneous heat conduction equation 
(1.3) when there is 8 prescribed mean gradient of A .  This is the thermal problem, in 
which A is used for temperature. It constitutes a well-defined and important problem 
in its own right, which introduces concisely the classical problem of bulk transport 
of a passive scalar. We regard the thermal problem as the core mathematical problem 
in this paper and shall frequently use its intuitive terminology in our discussion. So, 
for example, contours of constant A define isotherms in the thermal problem but 
define the horizontal projection of field lines in the magnetic problem, since A is the 
magnetic potential for the horizontal field. In particular, this means that the 
prescribed mean temperature gradient gH (see (1.4)) defines a uniform magnetic field 
BH (see (1.12)) perpendicular to it. 

The solution of the thermal problem is outlined in tj 1.2. It is a prerequisite for, and 
provides the first stage of, the complete solution of the magnetic problem outlined in 
tj 1.3. The second stage consists of solving the inhomogeneous heat conduction 
equation (1.14), in which the heat source on the right of the equation depends 
linearly on A .  In both the thermal and magnetic problems only the case of large 
Reynolds number will be addressed in detail. The appropriate asymptotics is 



102 S. Childress and A .  M .  Soward 

outlined in $1.4. There are minor differences in the key matrices D (see (1.8)) and a 
(see (1.20)) which emerge because gH is perpendicular to B, and because B is absent 
in the thermal problem. Thus the reader interested only in the thermal problem can 
omit all subsequent Sections concerned with the calculation of B. The asymptotic 
evaluation of the coefficients of the diffusion matrix D and their tabular data are 
given in Appendix B. 

1.2. The thermal diffusion problem 
The thermal problem considers the advection-diffusion of a steady, z-independent, 
scalar temperature field A(x,  y) which satisfies the heat conduction equations 

for a prescribed mean temperature gradient 

(gs ,  gy) g H  = VA, (1.4) 

where the bar indicates a horizontal average. In (1.3), U, = (a@/ay, -a@/ax) is 
the horizontal velocity field, where the streamfunction @ is given by ( l . l b ) ,  and 
R = UL/K is the PBclet number ; U is a reference velocity, 2xL is the period in x and 
y of the flow, and K is the thermal diffusivity. The solution of the problem posed by 
(1.3) and (1.4) has the form, 

A = g, - [x + A'(x, y)] + constant. ( 1 . 5 ~ )  

Here the vector A' is independent of g,, has zero horizontal average (z = 0 ) ,  and 
is defined by 

2A' = - i(-)A(+)(x, y) + j(+)A(-)(x, y), (1.5b) 

where i(') are given by (1.2a, b )  and A(*)  are the periodic solutions of 

( 1 . 5 ~ )  

The quantity of physical interest derived from the solution is the mean heat flux 
-- 

FH u,A = ( -+Av,  +A,). (1.6) 

This result follows after an integration by parts which uses the fact that V(@A) 
vanishes. We note also that (1.6) continues to  hold when A is replaced by g,.A' 
(because @7A = $gH = 0). Since the solution ( 1 . 5 ~ )  depends linearly on g,, i t  
follows that FH is linearly related to  g, through a matrix D. The symmetry 
properties of D, which' we will now determine, depend on the symmetry of the 
solutions A ( * )  of ( 1 . 5 ~ ) .  

We begin by identifying the two transformations which leave $ and V(g,-A')  
invariant. They are (2, y) + (x+mx,  y +nx) ,  where m, n are integers with even sum, 
and ( z , y ) + ( - x ,  -y). The former is obvious and the latter depends upon the 
property A'( -x, -y) = - A'fx, y). Each cat's eye is contained in square domains 
Drn,?l= - [mn, (m+ 1) x] x [nx, (n+ 1) n], where m, n are arbitrary integers. The two 
neighbouring cat's eyes in Do, and Dl,  bound a channel l@l < 6, which we refer to as 
the primary channel. I n  figure 1 the primary channel enters the square [0,2x] x LO, 2x1 
on the lower boundary, and leaves on the right-hand boundary. Figure 2 (a )  is obtained 
by a shift down by n, and shows the square [0,2x] x [ -x, 151, so the primary channel 
crosses thesideO:.(O,O),P':(x,O)ofD,,,and thesideP:(x,x),P":(2x,x)ofD1,,. The 

- 
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(4 
FIGURE 2. ( a )  The primary channel in the boundary-layer limit for the case B, = (Bz,Bv), showing 
where various field profiles are defined relative to the streamlines bounding the cat's eyes. ( 6 )  The 
boundary-layer problem in (cr, &)-coordinates. 

parallelogram O P P P  can be mapped by the two transformations into the entire 
(2, y)-plane. Since the mappings leave @VA' invariant, the parallelogram thus defines 
the smallest region over which we may take the horizontal average (1.6). In practice, 
we find it more convenient (because of the geometry of the boundary layers, cf. $2) 
to take averages over the rectangle Do of area n2 with corners a t  ( O , O ) ,  (in, -in), 
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($n,$n), (n,n). The boundary of Do is indicated by the lines A,,  in figure 2(a) .  (The 
lines also indicate where boundary-layer profiles are to  be evaluated, in $2.) 

Additional symmetries can be identified from the transformation (x, y) + (y+n, x), 
which again maps Do,o onto Dl ,o .  (Note, in particular, the interchange of x and y.) 
By this latter transformation, $ changes sign, while the solutions A ( * )  of ( 1 . 5 ~ )  have 
the property -A(*) (y+n,  x) = +A("(X,  y). Accordingly we have the important 

say, which relates the two components of F, and Fv of the mean heat flux (1 .6) .  By 
(1.5b) the relations are 

from which we deduce that FH = - D - g , .  (1 .8b)  

Here D is the matrix D = D(+)/(-) + D(-)/(+), (1 .8~ )  

where /(*) are the dyadics ( 1 . 2 ~ ) .  
The result (1.8) of our idealized problem has important physical implications. If, 

for example, the mean gradient g ,  (and possibly also the cellular motion itself) vary 
on a lengthscale large compared with the cell size L,  then the equation for the mean 
temperature would involve the divergence of the mean heat flux FH. This leads to the 
well-known idea of an eddy diffusivity for which the total diffusion of the mean 
temperature 2 is governed by the divergence of the effective Fickian heat flux 

(1.9b) where 

Our problem is to determine the eigenvalues D(*) of the matrix D as functions of R. 

1.3. The kinematic dynamo problem 

The magnetic problem considers the advection-diffusion of a steady, z-independent, 
vector magnetic field B(x, y) which satisfies the magnetic induction equations 

1 
Detf = D+-1. R 

(1.10) 
1 
R v x (u x B) + - V B  = 0 (V * B = O ) ,  

where R = UL/r is now the magnetic Reynolds number of the flow based upon the 
magnetic diffusivity 7 of the now electrically conducting fluid. The magnetic field is 
given by 

( 1 . 1 1 )  

where the vertical component has been scaled with factor K present in the vertical 
component of velocity (see (1.1 a ) ) .  The horizontal components of (1.10) imply that 
the magnetic potential A ,  which defines the horizontal magnetic field BH, satisfies the 
heat conduction equation (1 .3) .  This equation is to be solved subject to the condition 
that the mean horizontal magnetic field is prescribed : 

(B,,B,) = (m, -zqE) = (g , ,  -g,) .  (1.12) 

The mathematical problem which emerges is identical to that outlined by (1 .5) .  The 
two distinct solutions A(+) and A(-) now correspond to the mean horizontal fields 

B H -  - i(+) and i f - )  (1 .13 )  
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(see (1.2)), which are directed parallel and perpendicular to the symmetry direction 
( 1 , l )  isolated in $1.1 .  

The vertical component of ( l . l O ) ,  on the other hand, implies that B is governed by 
the inhomogeneous heat conduction equation 

1 
R 

u,*VB--VkB = -uH.VA, (1.14) 

in which the term on the right supplies a source of heat. This equation is to be solved 
subject to the boundary condition that there is no mean vertical magnetic field 

B = o .  (1.15) 

The solutions of (1.14) have a form similar to (1.5) and are given by 

B = B H * B ,  ( 1 . 1 6 ~ )  

where 2 s  = i(+)B(+)(z, y) + i(-)B(-)(z, y) (1.16 b)  

and we recall that ( 1 . 1 6 ~ )  

The two spatially periodic functions B(*) are solutions of 

- i(+) - BH = - i(-) 'gH> &-). BH = $+) .gH. 

(1.16d) 

and have the same symmetries as A(*). 
The quantity of physical interest is the mean electromotive force u x B .  The 

vertical component is 
-V*(U,A) = -V*FH (1.17) 

(see (1.6)), which vanishes because FH is a constant vector. The remaining horizontal 
components will be denoted by KEH and are given by 

KEH z T B  = K(@VA-BV@). (1.18) 

Since @A is linked to FH by (1.6), and in view of the symmetries of B, it is a simple 
matter to establish the result 

- 

__ 

(lcIaA(*)/az-a~/az~(')) = (@aA(+) /ay-a~/ayB(~))  = -a(+), (1.19) 

say. It follows, as in (1.8) above, that 

where - 
(1.20a) 

(1.20 b)  

The x- and y-components of ( 1 . 2 0 ~ )  are given by 

where the rectangle Do, of area x 2 ,  was introduced and defined in $1.2 above. 
As in the case of the thermal problem described in the previous Subsection, the 

mean electromagnetic force (1.20) which we seek to evaluate is important when mean 
fields are allowed to vary on a scale large compared with the flow. Then the induced 
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current can be computed locally and used to  construct a much simpler dynamo 
problem on the larger scale leading, for example, to the so-called a2-dynamos (cf. 
Moffatt 1978). Here we are concerned only with the local problem in which the mean 
field is taken as horizontal and constant. It should be remarked, however, that the 
growth rate of the a2-dynamo depends on the determinant of the alpha-matrix (see 
(5.1) below), which is simply the product of its eigenvalues: 

det (a) = K*a(+’a(-). (1.22) 

For the dynamo to operate it is necessary that the determinant, and therefore both 
eigenvalues, be non-zero. 

1.4. Asymptotics for large R 
The most important assumption that we shall make is that  the parameter R 
appearing in (1.3) and (1.14) is very large : 

R %  1. (1.23) 

Childress (1979, hereafter denoted by C) treated the above magnetic problem for the 
Roberts’ flow given by (1.1) with 6 = 0, with the assumption (1.23). The boundary- 
layer methods used there also apply to the case 6 > 0, but the geometry of the 
boundary layers is different owing to the presence of the channels. The regions of 
closed streamlines within the eyes in figure 1 are regions of ‘flux expulsion’ where, 
for R 9 1, the scalar fields A and B are well mixed and therefore approach constants. 
The process of flux expulsion will not be discussed here but a recent discussion has 
been given by Rhines & Young (1983). The separatrices of the cat’s eyes thus locate 
the boundary layers of thickness order R-i, and it is clear that the parameter that 
measures the ratio of channel to boundary-layer width is 

/3 = 6Ri. (1.24) 

When /3 is of order unity, the boundary layers on either side of a given channel are 
superimposed and must be treated as one structure. If p is large the channels divide 
the magnetic layers on either side and the latter can be treated as distinct boundary- 
layer structures, which match a t  their outer edges with the flow in the eyes and 
channels. When p % 1, we thus can split up the problem into outer or ‘mainstream’ 
solutions, and inner or boundary-layer solutions, the key step being to effect a proper 
matching of the two. This leads us to adopt the following organization of the paper. 
In $2 we present the boundary-layer problem formulated for numerical computation 
a t  fixed p. We there explore the overall structure of the solution and the dependence 
of observables on p, Sections 3 and 4 attempt an analytic approach to the dual limit 
of large R and large p, needed to discuss the limit of large R a t  fixed 6. The 
mainstream analysis of $3 utilizes Prandtl-Batchelor (1904, 1956) theory to obtain 
the limiting forms of the fields within the channels and eyes, up to  boundary-layer 
corrections. These mainstream solutions provide the edge conditions (zeroth-order 
matching conditions) needed to determine the structure of individual (non- 
interacting) boundary layers, and this analysis, which utilizes the Wiener-Hopf 
technique, is summarized in $4, Some of the details concerning these analytic 
solutions, which have application to other advection-diffusion problems (see, for 
example, Brown & Stewartson 1978), are collected in Appendix A. 

Insofar as the computation of a is concerned, the case 6 = 0, first studied for 
arbitrary R by Roberts (1972), exhibits an additional symmetry under the reflection 
(z, y )  + (-2, y), namely A(+) (x ,  y) = A(-)( -2, y )  and B(+)(x, y )  = I?(-)( -2, y ) .  By (1.7) 
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and (1.19) these relations imply that D(+) = D(-) = D,  say, and a(+) = a(-) = a ,  say. 
Therefore, the resulting diffusion and alpha-matrices are isotropic, 

D = D/, a = - K d ,  (/(” + /(-) = /) . ( 1 . 2 5 ~ )  

The asymptotic analysis in C shows that, correct to lowest order, 

= a = R-- &to (a, = 0.5327.. .) (1.25 b )  

(see also Appendix B). The value of a,,, which was estimated approximately in C, was 
addressed by the numerical studies of Anufriyev & Fishman (1982), and Perkins & 
Zweibel (1987), while its analytic evaluation was given by Soward (1987), hereafter 
denoted by S;  see also Soward (1989). 

At the other extreme, 6 = 1 ,  for which the cat’s eyes disappear and $ = cos(y-x), 
there is no mean induction when the mean magnetic field is aligned with the 
unidirectional horizontal motion (i.e. B, = 8+), see (1.13)). Indeed exact solutions of 
( 1 . 5 ~ )  and (1.16d) are readily obtained. They are 

, A(-)  = B(-) = Rsin (y-x). (1.26a, b)  A(+) = B(+) = 0 

From (1 .7)  and (1.19) we see that the eigenvalues D(+) and a(+) vanish, leaving 

D = I&/(+), = --KR/(-). (1.27 a ,  b )  
The last result has important implications for the dynamo problem. We have 

already indicated below ( 1.22) that the dynamo will not operate when a(+) vanishes 
and so the case 6 = 1 is not a dynamo. The results given below show that, for large 
R, the coefficient or(+) tends to zero quickly with increasing 6. The actual values of a(+) 
and a(-) are computed numerically from equations derived by boundary-layer theory 
for various values of p (see table 1) .  Analytic expressions for them are obtained when 
p is large, but still restricted to the case of narrow channels (6 < 1). At leading order 
they are 

a(-) = O(RS3), a(+’ = O(R-&Y6-2) (R-1 < 6 < 1) (1.28a, b)  
(see (3.23), (3.24)). The former large result for a(-) is determined with relative ease 
from the mainstream solution of 93. The latter small result for a(+) emerges from 
boundary-layer corrections to the mainstream solution. The asymptotic behaviour of 
a(+) provided the stimulus for the detailed Wiener-Hopf calculation used to solve the 
boundary-layer problem. The results show that, despite the fact that a(+) tends to 
zero with increasing 6, the key quantity det (a) actually increases linearly with 6 ;  in 
this sense we conclude that the channels enhance the alpha-effect. As the results 
( 1  2 8 )  indicate, the analysis of the boundary-layer structure is an essential ingredient 
in deciding the basic question of dynamo activity. 

The estimate of the alpha-effect for large R leads naturally to the question of ‘fast’ 
dynamo action, that is, the presence of dynamo activity in the limit of infinite R. This 
question is addressed for our two-dimensional flows by seeking solutions with the 
mean magnetic field BH proportional to ept+inz, where p is the growth rate and n is 
the wavenumber in z. When 6 = 0, (1.25) and (5.1) below show that the growth rate 
a t  fixed n is proportional to KR-&, n as R + 00. This result suggests that fast dynamo 
activity is possible when n is of order Ra, corresponding to vertical lengthscales 
comparable with the boundary-layer thickness R-g. The case 6 = 0 was considered in 
S, where it was shown that in the limit R + 00 the growth rate is K R - h ,  where now 
u(p) is a function of p = R-1 (In R)  n and u ( 0 )  = a,. Recently Galloway & Frisch (1986) 
have, like Roberts (1972) before, employed modal expansions and solved the 
magnetic induction equation directly for R ranging up to values in excess of lo3, 
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without making the boundary-layer approximations used in the present paper. 
Soward (1989) has shown that their results confirm the dependence of v upon p 
predicted by the asymptotic theory. One point which emerges from these 
investigations is that the underlying dynamo process for p of order unity is 
adequately described by the theory of C for p = 0. There are, of course, quantitative 
differences, but the central issues are isolated by the case p = 0. In this paper we shall 
not address the question of the dependence of the alpha-matrix on p,  and so the work 
provides the extension to 6 > 0 of C but not of S. For additional discussion of the 
implications of our results with p = 0, for dynamo action on vertical lengthscales of 
order 6, see $5.  

Before proceeding we comment briefly upon our choice of velocity (1.1). Dynamo 
action a t  large R is sensitive to the location of the boundary layers, and for three- 
dimensional flows, such as the Beltrami ABC flow, they may become very 
complicated. Galloway & Frisch (1986) have presented pertinent numerical results 
for large R. Some analytic progress has been made (see C, and Childress & Soward 
1985) but no robust theory is yet available. The aim in this paper is to break the 
symmetry of the Roberts motion (6 = 0) in a relatively simple way to determine the 
effect on the inductive processes. The relative simplicity of (1.1) with 6 > 0 is a result 
of the geometry of the streamlines. These are either closed within the cat’s eyes or 
infinite-periodic in the channels. A fluid particle thus has a simple trajectory in either 
case. By adjusting the parameters of the ABC flow, more complicated structure may 
be obtained, including regions of Lagrangian chaos. Consequently the present results 
comprise a first step in the breaking of the symmetry of the Roberts motion, which 
could in principle extend to flows which have some of the features thought to favour 
fast dynamo action. Insofar as (1  . l )  is concerned, the fast dynamo issue is of interest, 
byt it will not be the main concern of the present study. 

2. The boundary-limit layer 
The present Section is devoted to the formulation and solution of the boundary- 

layer problem which determines scalar transport and alpha-effect a t  large R when /3, 
as defined by (1.24), is of order unity. The notation and general procedure is similar 
to that of S and C, but is complicated by the opening of the channels for positive /3. 

2.1. Formulation 
When 6 is small the section of the primary channel 1 ~ 1  < 6, identified in 9 1.2 and lying 
within the averaging rectangle Do, is close to the two straight line segments O P  and 
P P  illustrated in figure 2 (a )  while the cat’s eyes almost fill the squares Dm, 12. When 
the channel and magnetic boundary-layer widths are comparable (i.e. /3 = 0 ( 1 ) ,  cf. 
(1.24)), the boundary-layer analysis closely follows the 6 = 0 case. Indeed the 
boundary-layer equations for A and B are the same as for that case, namely 

where, if q = IuI and s measures arclength, 

(2.1 a ,  b )  

(2 . lc ,  d )  

Thus CT is circulation along the boundary layer, while 6 is a stretched stream function. 
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Since magnetic flux is expelled from the cat’s eyes (cf. $3.2 below), the values of 
A and B are constant in the eyes, and for the mean field (1.12) the appropriate 
constants are 

AMs = ~(nB,-d-~), BMS = 0 ’  on D,,,n, (2.2a, b)  

where m, n are arbitrary integers, and the constant in ( 1 . 5 ~ )  has been given the value 
- (n/2) i(-)-&. The solutions of (2.1) must, therefore, satisfy the boundary conditions 

A + A M S ,  B+O as 1[1+co. (2.3a, b)  

When we consider the primary channel it is natural to measure arclength s from the 
origin 0 (see figure 2a). Fluid flows from 0 to P ,  where u = 2, and on to P,  where 

= 4. The channel is bounded from above by the streamline [ = P, which bounds the 
cat’s eye Do,o between 0 and P, and below by the streamline 6 = -p, which passes 
through P ,  and bounds the cat’s eyes Do,-l (on 0 < u < 2) and D l , o  (on 2 < u < 4 ) .  

In figure 2(a) we also sketch the various positions where profiles of A and B will 
be evaluated. The boundary-layer theory amounts to following the fields as they 
develop, down the primary channel say, and then using the symmetry of the flow and 
the secular variation of A arising from the mean field to derive relations between the 
profiles a t  distinct points along the channel. The profiles can be related as the 
boundary layer passes near to the X-type neutral points where the separatrices cross. 
We refer to these points as ‘ corners ’ since the boundary layers are turned at the 
corners and a natural matching of profiles is established. The asymptotics of the 
corner matching is discussed in C, and by Anufriyev & Fishman (1982). From (2.1 a )  
we see that profiles of A evolve as solutions of a homogeneous one-dimensional heat 
equation, the mainstream values (2.3 a )  providing the boundary conditions. Related 
procedures apply for the inhomogeneous equation (2.1 b) with homogeneous 
boundary condition (2.36). 

To be more precise, we define the profiles shown in figure 2(a) by 

( 2 . 4 ~ )  

(2.46) 

A P , ,  5) = A4(8> A(2-9 E )  = A,( [ )  ( E  < -/% ( 2 . 4 ~ )  

where the subscripts + and - are used to’indicate whether the value of u referred 
to is approached from above or below. The corresponding locations in the (u, [)-plane 
are shown in figure 2 ( 6 ) .  The corner regions in figure 2(a)  mark the location of the 
transition region where matching of the boundary-layer profiles occurs. The spatial 
periodicity together with the secular increase of A down the channels implies that 

A 1 + d z  = A,+7cB,. ( 2 . 5 ~ )  

The symmetry of the flow and A about the diagonal 0 P  of the cat’s eye Do* implies 
(the mainstream value in this primary cell being zero) that 

A ,  = -A6.  (2.56) 

The value A ,  a t  the corner P :  (2n, K) may be derived from A ,  by the secularity 
argument or from A,  by the symmetry argument. Together they yield 

A 3 + d Z [ =  A7+nBV] = - (A4+~Bv) .  ( 2 . 5 ~ )  
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An important observation concerns the regularity of the field profiles as the 
continuation described above is carried out. Since the initial-value problem for the 
heat equation produces analytic profiles downstream, we have, in particular, that all 
‘terminal’ profiles entering a corner are analytic. However, portions of the profile 
within the eye and channel arrive a t  the corners from different regions, and therefore 
they need not agree on the separatrix, where A or B can be discontinuous. For 
example, the profiles A ,  and A ,  need not agree a t  0 (see figure 2(a)).  As a result 
boundary layers are ‘triggered ’ at  the corners from these discontinuities. 

To avoid dealing with the additive constants in (2.5) it is actually more convenient 
to work with 

aA 

a5 
b(a,[)  = -. 

Since, as we have just seen, A ( O + , [ )  and A(2+,5) are in general discontinuous a t  
( = p and -/3 respectively, differentiation of A introduces heat sources Q, and Q2 
(see (2.8) below) a t  0 and P respectively. Their strength is determined so that 
the appropriate integral of b results (see (2.10) below). We therefore set 

(2.7) 

where in the latter case the regular part of the functions is taken on the right. Then, 
in terms of the initial values at a = 0 and 2, the Green-function solutions of ( 2 . 1 ~ )  
are 

(47ca)%(a+ 2, 5) = Q2 e-(5+B2/4u+ gA2(u) e-(5-u)2/4ud~ (2.8b) 

on the sides O P  and P’P respectively. The symmetry and periodicity conditions (2.5) 
imply that 

while the boundary conditions (2.2) and (2.3) imply that 

r: 
g,, = sgn ( / 3 - 0 f A 2 ( 8 ,  g A 2  = sgn ( P + E ) f A O ( 5 ) ,  (2.9) 

(2.10) 
J -m J -m 

It is now convenient to consider separately the two cases of a magnetic field 
B, = i(+) parallel to, and BH = i(-) perpendicular to, the channels and cat’s eyes (see 
(1.13)). The latter case, in which the mean magnetic field is transverse to the channel 
flow, is the more interesting because the mean magnetic field is susceptible to folding 
and stretching by the flow down the channel; a feature already exhibited by the 
solution (1.26) and (1.27). For these cases, (2.7)-(2.10) simplify giving 

f A  ~ f A o ( 5 )  = * f . 4 2 ( - t ) ,  g A  g A o ( 5 )  = * g A * ( - t ) $  C? Qo = * Q Z ,  

(2.1 1 a*) 

where = *sgn(P-6)fA(-o, I;:fA(5) d6 = x. (2.12u, b)  

Here and in the equations that follow the upper and lower signs correspond to 
BH = i(+) (the parallel case) and & = it-) (the perpendicular case) respectively. This 
procedure clearly identifies the appropriate case and so we drop the superscript 
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notation ( -F) employed in tj 1,  except where they are used to define the diffusion and 
alpha-matrix eigenvalues. When (2.8a, b) are evaluated with a = 2, they lead with 
(2.11) and ( 2 . 1 2 ~ )  to the single integral equation 

J -m 

where, with the help of (2.12b), Q is fixed by 

n: = Q f r m s g n ( p + u )  -m fA(u)du. (2.13b) 

Once b is found we may solve for B by noting that it satisfies (2.1 b) with a solution 
of the homogeneous heat equation on the right. We then select a particular solution 
which is well-behaved in that it avoids the heat sources on the initial line which are 
present in A .  We are then free to  add a solution of the heat equation, and make the 
sum of the two terms compatible with the boundary and initial conditions on B. Thus 
the solution of (2.1 b )  on the first section OP' of the primary channel is expressed in 
the form 

B = t(t-P) b ( a ,  0 +C(a, 6) (0 < < 21, (2.14) 

where C is a bounded homogeneous solution of the heat conduction equation (2.1 a).  
On the second section P P  of the channel, (6-P) in (2.14) is replaced by ( t+P) .  
Defining fB,C and g B , c  as in (2.11 a,  b )  by the values of B, C a t  a = 2- and 0, 
respectively, we see from (2.14) that they are related by 

g B ( k )  = [8 t -P)1 g A ( t ) + g C ( t ) ,  f B ( 0  = [t(t-P)lfA(6)+fC(C). (2'15a, b, 

For the particular case of aligned and orthogonal mean magnetic fields, we note that 
B has the symmetry with respect to 6 ofA and not b ( = &l/i3E). Consequently in place 
of (2.12a) we have 

- g B ( t )  = fsgn ( P - t ) , f B ( - 8 >  (2.16) 

and in place of (2.13a) we have 

(2.17) 
J -m 

From (2.12a), (2.15) and (2.16) we deduce that 

- s c ( t )  = fsgn(P-t)h(- tL (2.18 a )  

where = f c (5 )  -Pf,(t). (2.18b) 

With (2.17) they lead to  the integral equation 

Finally, the alpha-matrix is calculated from (1.21). The contributions from the 
integrals (1.21 a )  and (1.21 b) stem from the channel sections P P  and O P  respectively. 
For our parallel and perpendicular fields, (1.21) (or equivalently (1.19)) gives 

+Ria(" - = + E  - p'p = -Eop,, (2.20) 

where (2.21) 
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B N L  
0 97 24 
0.5 103 25 
1.0 101 24 
1.5 107 25 
2.0 105 24 
2.5 1 1 1  25 
3.0 109 24 
3.5 115 25 
4.0 113 24 

Numerical Asymptotic 

0.5327 0.5180 
0.2246 0.2248 
0.1186 0.1250 
0.07667 0.07941 
0.054 67 0.054 89 
0.04052 0.040 19 
0.03088 0.03070 
0.02424 0.02421 
0.01957 0.01958 

Ria(-' 

Numerical Asymptotic 

0.532 7 0.409 0 
1.383 1.320 
3.377 3.455 
7.203 7.314 

13.37 13.40 
22.25 22.20 
34.28 34.24 
50.01 49.99 
69.96 69.97 

K-'R det (a)  

Numerical Asymptotic 

0.283 8 0.21 1 9 
0.3106 0.2967 
0.4005 0.4319 
0.5523 0.5808 
0.7309 0.7355 
0.901 6 0.8922 
1.059 1.051 
1.212 1.210 
1.369 1.370 

TABLE 1 .  Summary of numerical and asymptotic solutions of the integral equations (2.13) 
and (2.19) 

takes the constant values EFP, Eopr along the section indicated by the subscript. The 
constancy of E is readily established by showing that dE/du vanishes, except 
possibly at  corners. With EoF evaluated a t  P ( a  = 2) using (2.156), (2.18) and (2.19) 
the result (2.20) becomes 

+R:aa") = -&--I [!pfA(u)+sgn(p+u)h(u)]du. (2.22) 
1 +O0 

7c -'XI 

2.2. Numerical solutions of the system of integral equations 
We studied numerically the solutions of the pair of integral equations for fA([) and 
h( t ) ,  given by (2.13) and (2.19). Double-precision calculations using the NAG 
nonlinear system solver C05NBF with the integration routine DOlGAF were used on 
N equidistributed points on the interval ( - L -p, L +p). The source strength Q was 
obtained simultaneously as the solution of an (N+  1)th equation. Table 1 summarizes 
our findings, and includes the asymptotic results to be discussed in $4. 

The most prominent feature of these computations is the tendency for a(+)/&(-) to 
become small as p becomes large. Ultimately, of course, the cat's eyes disappear and 
(1.27) is obtained, but it is remarkable how quickly this behaviour is realized as /? 
increases. The physical result is that the dominant induction occurs for a mean field 
perpendicular to the axis of the cat's eyes (at an angle 45' to the Ox axis), there being 
very little effect on fields parallel to the eyes. This is of course a manifestation of the 
stretching out of field lines in the channels, which occurs only if the mean field crosses 
the axis of the eyes. 

In  view of (1.27) it  might be expected that det (a) would decrease with j3, but it is 
evident from table 1 that  this is not the case. Since (cf. $ 5 )  the usual u2-dynamo effect 
depends upon the size of det (a) rather than on the magnitude of any one entry in the 
matrix (and in particular vanishes for the singular matrix (1.27)), this property of the 
cat's-eye flows is an important one and is the main result of this paper insofar as 
dynamo action is concerned. However, in order to  reliably calculate det (a) at large 
,8 we must accurately determine a(+) and this becomes increasingly difficult to do 
numerically because, relative to the size of the channel, the magnetic boundary layer 
width decreases, leading to  a finer magnetic field structure. This difficulty highlights 
the importance of an asymptotic theory for large p. The asymptotic results given in 
table 1 support the numerical results and it will follow from the formulas given in $4 
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FIQURE 3 (a, b) .  For caption see next page. 
6 -  

that det (a) actually increases linearly with p for large p. We shall look more closely 
a t  the accuracy of the computed alpha-effect in $4. 

We show b and B for p = 6 in figure 3. One sees in these figures the mainstream 
channel solutions emerging, bounded by magnetic layers. They carry magnetic flux 
b with a nearly uniform profile in the aligned case (see figure 3a), but with a nearly 
uniform shear in the perpendicular case (see figure 3c). Indeed, the results of $$3 and 
4 below show that, for large p and within the channelsi(2.13) and (2.19) are solved 
approximately by 

case (p B 1). (2.23a, b)  
{ [y, $,o], parallel 

[Q ,  b, Bl x 
[1/27@, +En, in(E2 -/?)I, perpendicular 

Only the first entry Q is dependent on the nature of the magnetic boundary layer (see 
QQ4.2, 4.3); the other entries b and B are independent of it. Improved entries for B, 
incorporating boundary-layer contributions, are given in $4 (cf. (4.32 b )  and (4.47 b ) ) .  
The lowest-order results yield the alpha-matrix 

-K-l& = $p3/(--) (p B 1). (2.24) 
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15 10 5 0 - 5  - 10 - 15 
6 -  

I 
15 10 5 0 - 5  - 10 - 15 

4 -  
FIQURE 3. Terminal profiles, upon arrival a t  the point P :  ( n , ~ )  in figure 2 ( a ) ,  for the case p = 6. 
Positive and negative 6 correspond to flow on the left and right of the channel, respectively. The 
functions b and B, defined by (2.6) and (2.14), are plotted on ( a )  and ( b )  for the parallel field case 
(B, = ++)) and on (c) and ( d )  for the perpendicular field case (B, = P). The dashed lines are the 
complete (/3% 1) mainstream solutions, as derived in $4. For these computations we adopted 
N = 121, L = 24, but only those parts of the solution with 151 < 16 are plotted. 

In  figure 3 the dashed lines superimposed on the calculated profiles show the 
asymptotic results for (b,B),  obtained for large p and given by the results of $4. 

We conclude from these studies a t  large p that the first-order expressions (2.23) 
give good approximations when p exceeds 6, while the boundary-layer corrections 
make the answers reliable down to p = 1.5 approximately. 

3. Analysis of the finite channel 

separatriws. 
We now turn to the expansion for large R for fixed 6 > 0, a t  points that are not on 
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FIQURE 4. The geometry of a finite channel. 

3.1. Expansion for small diffusivity 
A direct attack on (1.3) and (1.14) for large R and fixed 6 > 0 must be confined to the 
mainstream regions away from boundary layers, and so the analysis will determine 
solutions uniquely only up to the first non-vanishing contribution from matching 
with the boundary layers. (The question of matching is considered in $4.) 

We first study (1.3) for a general domain, within which diffusive effects are 
assumed to be small. The Prandtl-Batchelor theory we use is well known from the 
corresponding analysis of vorticity for nearly inviscid flows. For a summary and 
references to the literature see Lagerstrom (1975). 

Consider the family of streamlines I($) ,O < y? < Po shown in figure 4. Here the 
streamlines connect two arcs Cl,2 where we assume that the values of A are given. 
For analysing this problem we may take $ and the arclength s measured from C, to 
be the independent variables, where s = S(y?), say, on C,. We shall try to solve 

aA 
(3.1) 

(3.2) 

q - -R-'V'A = 0 
as 

in the form 

where R" is a scale factor ; the exponent ,u will be chosen as part of the solution and 
will depend upon the mean field orientation. The assumption (3.2) is a very restricted 
one based solely upon the form of (3.1) and our intention is to seek only a full 
determination of A,. In general the matching with the boundary layers (as in $4) 
leads to terms of intermediate orders in (3.2), probably beginning with one of order 
RP-P and possibly to more involved orders containing 1nR. The first intermediate 
term is necessarily a solution of the homogeneous heat equation, however, and so is 
independent of the present computation of A,. 

Substituting (3.2) into (3.1), we see from the terms of order R that A ,  is a function 
of @ alone, and from the terms of order unity that 

A = RP(A, + R-'A + 0(Rp2) ) ,  

Thus q-1V2A,da = Al(fl($), $)-A1(0, $) [A, ] .  

The left-hand side of (3.4) may be transformed to give 

(3.5) 
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where R, is the domain bounded by I ($) ,  the lowest streamline I ( O ) ,  and the arcs Cl,2.  
Since an area element dxdy transforms to q-l dsd$ we see that the right-hand side 
may be evaluated using the divergence theorem to obtain 

where (3 .7n)  

( 3 . 7 b )  

and 01,2 is the angle between the normal on C,,* and the tangent vector to a 
streamline (see figure 4). 

Given the functions A ( $ )  and [ A l ] ( $ ) ,  (3.6) is an equation for A,($),  whose 
solution is uniquely determined by supplying two boundary conditions. The latter 
are typically obtained as matching conditions across thin diffusive layers. 

Turning to the field B,  and adopting an expansion of the form (3.2) with the same 
p, we see from (2.1 b )  that B,  is independent of s and that 

which can be solved in the same way as (3.3). 
Of course the expansion (3.2), augmented by the intermediate terms mentioned 

above and continued indefinitely as an asymptotic series in R-i, can be obtained by 
systematic matching with the boundary layers. If the resulting expansion were then 
simultaneously expanded for small 6, the terms could be recast as an expansion in 
/F'. It is more efficient, however, to recover the channel solutions for large p directly 
from the boundary-layer solution, as we show in $ 4  below. 

3.2. Application to the channel 
We now apply these results to  the particular flow (1.1) and restrict attention mainly 
to the channels, -6 < @ < 6. In order to  utilize the result (3.6) we take C, as 
some arc across the primary channel and relate C, to it by the transformation 
(x, y )+(x+n,  y+n)  (e.g. A ,  and A ,  in figure 2a). The periodicity of the flow 
and the corresponding magnetic field implies that  d = 0 in all applications. To calcu- 
late y it is convenient to express the horizontal components of the velocity in the 
form 

(3.9a) 

where ~ ( 7 ,  $) = 162  - $2 + (1 - 82) sin2 71;. (3.9b) 

Here we have transformed both components of ( 3 . 9 ~ )  in order to make the stream 
function a coordinate in each case. It follows immediately from (3.7a) and (3.9) that 

y($) = 2 p ( 7 . $ ) d 7  ( -8 < $ < +4, (3.10) 

which introduces the geometry of the flow (1.1) into the present theory. The limiting 

uH = (u(x, $)> '(y, $)I, 

0 
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forms of U and y, which occur when either the cat’s eyes almost fill the squares 
Om,.(& 4 1) or disappear (6 = I ) ,  are 

(3.11a, b)  

respectively . 
The theory is modified slightly within the cat’s eyes. There we consider 

closed streamlines (C, = C,) so that again A = 0 but in addition we necessarily have 
[A]  = 0. It follows that (3.6) simplifies and can be integrated once giving 

(3.12) 

Since y vanishes a t  the 0-type stagnation point of the horizontal motion u, a t  the 
centre of the eye, the constant in (3.12) is zero, implying that A ,  is independent 
of @ and therefore constant everywhere on the eye 6 < 191 c 1. Of course, an 
iterative solution of (3.1) then reveals that A is constant to all orders and deviates 
only in the magnetic layers near the edges of the eyes. A similar result holds for B. 
The resulting mainstream eye values for A and B are given by (2.2) and the values 
of A neighbouring the primary channel are illustrated in figure 2 (a ) .  

When the magnetic field is parallel to the channels, BH = P+), the choice ,u = 0 in 
(3.2) is appropriate. A match with the cat’s-eye solution on either side of the primary 
channel is achieved when A,(6) = 0 and A , ( - @  = -n. Since there is no secular 
change of A down the channel we have [A,] = 0. Integration of (3.6) subject to our 
two boundary conditions a t  @ = &6 yields 

(3.13) 

with the limiting values 

(3.14a, b )  
(6=  1). 

The small-6 result yields the middle entry of (2.23a), while the result for S =  1 
recovers the mean magnetic field B,, which remains aligned to the unidirectional 

The more interesting case occurs when the mean magnetic field is perpendicular to 
the channels, BH = P). I n  this case the secular increase of A down the channel 
implies that the choice p = 1 in conjunction with [A,]  = 2n is appropriate. It means 
that a field of order R is required to make diffusion of order unity. This ordering, 
which is needed to make A change by an order-one amount along a streamline of the 
primary channel, is the source of the strong channel field realized by the cat’s-eye 
flows. By the symmetry, aA0/i3@ (within the primary channel) is an odd function of 
@ and so (3.6) integrates to 

flow u,. 

(3.15) 

Just  as in the case of aligned fields considered above, we impose continuity of A, 
between channel and eye, which is a necessary consequence of the fact that the fluxes 
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within the magnetic boundary layers are fixed by the mean field to be of order unity, 
whereas a jump in A ,  implies a concentrated flux of order R .  Since at  leading order 
A ,  vanishes in the cat’s eyes, the boundary conditions on (3.15) are A,( +S) = 0. 
Consequently the integration of (3.15) yields 

with limiting values 
$(Ip-6’) (6 4 l ) ,  
sin@-z) (6 = 1) .  

(3.16) 

(3.17a, b )  

The small-6 result yields the middle entry of (2.23b), while the 6 =  1 result is 
consistent with (1.26b). 

The calculation of B, from (3.8) proceeds in a similar way, but now the cat’s-eye 
solutions (2.2b) imply that [B] = 0 in every case. The equation analogous to (3.6) 
integrates once giving 

y($)-(B,-A,)  = constant. (3.18) 
a 
w 

The solutions, which satisfy the boundary conditions at  $ = k6, are 

parallel case, 
Bo = {2,, perpendicular case. 

(3.19a, b)  

In the case of small 6 the result yields, with the help of ( 3 . 1 4 ~ )  and (3.17a), the final 
entries of ( 2 . 2 3 ~ )  and (2.236) respectively. On the other hand, when 6 = 1 ,  (3.19b) 
completes the solution (1.26b). 

The channel contributions to the alpha-effect can now be calculated from the 
present limits using (1.21) (or (1.19)). We obtain 

(3.20) 

where as in $2 the upper and lower signs refer to the cases of parallel (p = 0) and 
perpendicular (p = 1) mean magnetic fields respectively. In the parallel case, aA,/a$ 
is even in @, while B, vanishes. It follows that 

a‘+’ = 0. (3.21) 

On the other hand, for the perpendicular case (3.20) reduces, with the help of (3.15), 
to 

with limiting values 

(3.22) 

(3.23a, b)  

With (3.21) the small-S result yields (2.24), while the 6 = 1 calculation is consistent 
with the exact result (1.27 b ) .  

The mainstream channel solution match with shear layers located at  the 
streamlines $ = +S. The resulting contribution to the alpha-effect needs to be 
included only when 6 is small and /3 is not too large as we discuss in detail in the next 
Section. In the parallel field case they lead to the alpha-effect, 

a‘+’ = o(R-b-2) (8.4 I ) ,  (3.24) 
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(see ( 4 . 3 2 ~ )  below) as R --f 00 at  small but fixed 6. This produces a surprisingly small 
induced current, of order R-i, given that the integrand on the right of (3.20) is of 
order unity. In the perpendicular field case we see that, a t  the edges of the channel, 

(3.25) 

This order of magnitude is maintained within the boundary layer of thickness order 
R-t. Consequently the boundary-layer contribution to (3.20), which must be added 
to (3.22), is of order /I2. This contribution is seen in (4.47a), while additional 
contributions of the same order emerge from the mainstream vertical magnetic field, 
KB,  which is modified by the presence of the boundary layers (see (4.41 b) below). 

4. Boundary-layer theory for large p 
4.1. Solution for non-interacting layers bounding a channel 

We turn attention again to the boundary-layer limit investigated in $2 but now 
consider the case p B 1 ,  for which the boundary layers triggered at the corners stay 
close to  the separatrices and the channel thickness is large compared with the 
boundary-layer thickness. In this limit the boundary-layer structure of $ 2 splits into 
the layers associated with the channel boundaries, together with an 'outer' solution 
valid within the channel 6- 1$1 B R-i. The basic assumption upon which the present 
calculation proceeds is that the solution near $ = 6 is not affected by the boundary 
layer on the opposite side of the channel (near $ = -6). Our intention is to deal 
analytically with the boundary layers in the large-/) limit and derive the asymptotic 
alpha-effect recorded in table 1. Our results will in effect provide all the higher-order 
corrections to the channel analysis of the last Section, arising from the presence of 
the diffusive layers, up to terms that represent the interaction of layers bounding a 
channel. Small differences between these analytic results and the tabulated values 
will persist, particularly a t  the smaller /), and must be attributed to layer 
interactions. Nevertheless we shall show that our basic assumption of independence 
of the layers appears to be reasonably well satisfied down to /) = 1.5, this accuracy 
being a consequence of the rapid decay of the boundary-layer influence away from 
the separatrices. In fact the success of the method is probably a result of exponential 
decay with p of the contribution associated with boundary-layer interactions (see 
$4.4 below). 

The mathematical apparatus set up in $2 continues to apply but we modify it to 
accommodate the assumption just mentioned. The main change is to extend the use 
of the Green-function solution ( 2 . 8 ~ )  from O P  to the entire separatrix OP (0 < cr < 
4). We define g , , B , c  as before by the values at u = 0, (e.g. g, = b(O+, LJ-Q6(6-/3)) 
but the terminal valuesf,,,, are now taken a t  cr = 4-. The evolution of the ensuing 
integral in (2.8a), and of the boundary layer emanating from (O+, /3), is simplified by 
the introduction of the stretched stream function 

c = 5 6 - P ) .  (4.1) 
This leads to the boundary-layer form of the equation for A ,  

+m 

nv,(<) = +Q e-5' + gA(u) e-(c-u)p du, ( 4 . 2 ~ )  

while for C we have nVc(c) = r m g c ( u )  e-(c-u)adu. (4.2 b)  
J -m 
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f A .  c(5) = - sgn (5) g A ,  c(6) (4.3) 

for A and C. We now consider in detail the solution of the boundary-layer problem 
defined by (4.2) and (4.3). The structure of the boundary layer on the opposite side 
of the channel can then be inferred from the symmetry of the flow. 

We shall solve (4.2), (4.3) by extending the Wiener-Hopf procedure used in S 
(Appendix) to the case p > 0. 

Other, related heat-conduction problems have been solved with the Wiener-Hopf 
method. Stewartson (1968) determined the initial temperature of an infinite bar, such 
that after time T half of the bar has the initial temperature distribution, a problem 
that had been solved numerically by other workers. Benney & Bergeron (1969) 
studied the viscous layer bounding a row of cat’s eyes a t  a critical layer. The 
Wiener-Hopf problem that arises there is closely related to the Stewartson (1968) 
problem, but is essentially different. The cat’s-eye problem arises again at  the critical 
layer of a Rossby wave, and Brown & Stewartson (1978) give a detailed analysis. For 
our problem, when p is large, the diagonal rows of cat’s eyes do not interact, and each 
row is similar to a critical layer. Our analysis thus includes the Brown & Stewartson 
(1978, equations (3.18) and (3.19)) problem as a special case. Their problem 
corresponds to our homogeneous problem (4.2b), (4.3) for fc with the boundary 
conditions (4.25) appropriate to the parallel case. Here, we also must solve the 
problem with the different boundary conditions (4.35) appropriate to the per- 
pendicular case, as well as the inhomogeneous problem (4.2a), (4.3) for fA. 

Nevertheless, the key functions B’* (k), upon which our Wiener-Hopf solution (4.10) 
below is based, are derivable from their results. We indicate these derivations, using 
an alternative approach, in Appendix A. 

We now define our Wiener-Hopf problem and give the solution. Details are 
relegated to Appendix A. The Wiener-Hopf method (see Noble 1958) relies on the use 
of the Fourier half-transforms 

(4.4a, b )  
J o  

Since the inverse transformation off+(k) necessarily vanishes for all 5 < O,f+(k)  must 
be analytic in the upper half of the complex k-plane, Im (k) > 0. Likewise f-(k) is 
analytic in the lower half, Im (k) < 0. We use this subscript notation for other 
variables as well. Now the Fourier transforms of (4.2) and (4.3) yield 

(4.5a) 

(4.5b) 

f̂  A =f^ - A+ +fA- = (t&-f^A+ +fA-) e-k2’4, 

fc E fC+ +fc- = ( -fc+ +fc-) e-k2/4,  

which we rewrite in the form 

( 4 . 6 ~ )  

(4.6b) 

where F+(k)  - are the functions (A 2 b ,  c )  defined in Appendix A with the properties 

F+(k) = O ( k ) ,  E’(k) = O(k-l)  as k+O, (4.7a) 

F + ( k ) + l  as Im(k)-,+co, F’(k)+l as Im(k)+-co. (4.7 b) 
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By construction the functions F+ (k) are analytic and without zeros in the upper and 
lower halves of the copplex k-plane, except for the zero and pole identified by ( 4 . 7 ~ ) .  
The singularities of f + ( k )  a t  the origin are determined by the behaviour of f(5) as 
C+ 

[fA+,fc+l = 0 ( 1 ) ,  [f”,-,fc-l = O(k-’), as k+O. (4.8~) 

[ f A + , f c + ] + O  as Im(k)++co,  [fA-,fc-]+O as Im(k)+-co. (4.8b) 

It is now a consequence of the Wiener-Hopf method that the functions FA(k) and 
F,(k) in (4.6) have the form 

00. For our application they are 
“ A  

We also note from the definitions (4.4a) that  

d 
F,=-B&(~+;), F ~ = % ,  (4.9a, b )  

where a and d are constants, as yet unknown. The corresponding half-transforms 
which define fA([) and fc([) are 

(4.10a, b )  

Except for the values of the constants a and d the solution of the boundary-layer 
problem for non-interacting layers is complete. To fix their values, the boundary- 
layer solution must be matched with the mainstream solution. To leading order the 
mainstream solutions are given by (2.23), and we have seen in 53 that these may be 
derived from the finite-channel theory for small 6. Our present aim is to incorporate 
these solutions into the formal expansion for large p, and thereby obtain improved 
mainstream solutions which include all boundary-layer contributions excluding 
interactions. 

The needed matching may be achieved by decomposing all dependent variables 
into two parts, e.g. 

A = AMS+ABL, (4.11) 

where AMS is the mainstream solution and AnL is the boundary-layer correction 
which vanishes as Ifl-pI + 00. We have seen that the magnetic flux is expelled from 
the cat’s eyes, so by (2.3) 

b M S ( a ,  g) = B M S ( 0 - ,  6) = 0 (0 < 0- < 4, f l -p  > 0). (4.12) 

This means that the mainstream contributions to fA([) and fc(6) are non-zero only for 
5 < 0. Consequently the Fourier transforms of their boundary-layer contributions 
are 

fABL( k)  = f+( k) +f-( k) --fhlS( k) , (4.13) 

since fys(k)  = 0. This decomposition provides the key >o our matching procedures 
because the vanishing off nL(5) as 151 co implies that f BL(k) is analytic Ft k = 0. It 
then follows that the singularities off-(k) must be identical to those off MS(k), thus 
fixing the constants a and d in (4.10). The nature of the resulting solutions depends 
significantly upon the orientation of the mean magnetic field, as we have seen in the 
preceding Sections. We therefore treat the parallel and perpendicular cases separately 
in the next two Subsections. 
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4.2. The parallel case, BH = i(+) 
I n  this case the mainstream value of the magnetic potential within each of the cat's 
eyes is 

AMS = (n-m)n on Dm,n.  (4.14) 

The symmetry about the centre of the primary channel implies that 

AMS(a, 0) = -&I (4.15) 

and so we deduce from ( 2 . 1 ~ )  that  a2AMS/ag2 = 0. Integration gives 

bMS = b,, (4.16) 

where b,( = i3AMs,@6) is a constant. Further integration of (4.16) and (4.14) then 
recovers our lowest-order channel field 

b, /? = in + O ( p ' )  (4.17) 

(see (3.14a)). The error of order p' anticipates boundary-layer corrections, and the 
complete asymptotic result, which ignores a t  most exponentially small terms (cf. 
$4.4), is given in (4.30) below. 

Since both aAMS/au and aBMS/au are zero, (2.1 b) implies that  a2BMS/i3g2 = 0 also. 
Thus, using the symmetry once more, we obtain 

BMS = BhE, (4.18) 

where Bh( = aBMs//ag) is a constant which remains to be determined. According to the 
channel solution (3.19a), Bh must vanish a t  lowest order. It is, however, the non-zero 
value of order induced by boundary-layer corrections that controls the magnitude 
of the alpha-effect, as we shall see explicitly in (4.24) below. 

Once our solution is found the magnitude of the alpha-effect defined by (2.20) may 
be calculated. To do this we need to follow the variation of E in the channel. It is 
therefore convenient to treat both boundary layers and channel simultaneously, and 

(4.19a, b) 

(4.19~) 

we introduce 

l r  

m 

E+ = a J, (Eb-B)dE, E- = - ([b-B)dg 
n --m 

E = E++E- .  

Differentiating ( 4 . 1 9 ~ )  with respect to u and using (2.1) and (4.18) gives 

(4.20) 

Integrating this expression with respect to u, there results 

nE+ = B~(u-2 )  (0 < u < 4), (4.21) 

where the constant of integration has been chosen so that the right-hand side 
conforms to the symmetry by being antisymmetric about the midpoint u = 2. Note 
that the integral (4.21) involves only the layer at @ = 6 and the half-channel @ > 0. 
On the other side of the channel the boundary layer is discontinuous on the bounding 
streamline a t  the point P. The contribution analogous to (4.21) from that half is 

- B ~ V  (0 d u < 2), 
= -Bh(u-4) (2 < CT d 4), 

(4.22) 
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and so the total contribution from the channel is 

n E = {  xEo,.=-2Bh on OP’, 
xEp,=2Bh on P’P. (4.23) 

The result is consistent with (2.20), which confirms the symmetry (4.21) and yields 

(4.24) 

Our mainstream solutions (4.12), (4.16) and (4.18) define 

fA”“(5) =f3!3 = 0 (5  > O), ( 4 . 2 5 ~ )  

f,””CS = 60 ,  f m  = (wl--bo)5+BhP (5  < O) ,  (4.25 b) 

and they have the Fourier transforms 

4Bi-2b0 B i b  +- 
ik ’ f,”!(k) = 2, &(k) = - (ik)2 (4.26) 

defined in the first instance for Im (k)  <*O. As exp1a;;ined above, the singularities a t  
k =  0 must be identified wth those off,-(k) andf,-(k) as defined by (4.10). The 
singularities of these functions at k = 0 are given by (A 9). We equate the coefficients 
of (ik)-2 and (ik)-’ in (A 9) and (4.26) and obtain 

u = 0, Q / 4 8  = b,, 4 8 d  = 4Bh-2b0, 1/8dI‘= -Bh/3. (4.27) 

Finally the magnetic flux conditions (4.14), (4.15) give 

b dg = $, (4.28) Jla 
from which the boundary-layer correction to (4.17) may be obtained: 

+ m  

S, $ - b o p  = 4 bBLd[= 4AL(0). 

Use of (4.13), the first of (4.27), and (A 9a,  b )  gives 

( 4 . 2 9 ~ )  

4fiL(0) = 42QI‘. (4.29b) 

The four unknowns Q, d,  b, and Bh are thus determined from the last three 
expressions in (4.27) and (4.29). The leading-order approximation to Q gives the first 
entry in ( 2 . 2 3 ~ ) .  

The main results are that 

(4.30) 

Comparison of (4.30) with the zeroth-order result (4.17) shows that the boundary 
layer effectively increases the scaled channel flux by the amount 

4r = 0.9653 . . . , (4.31) 

This is a measure of the boundary-layer ‘displacement thickness ’. The interesting 
feature of the expression for Bh is that even its lowest-order value, nI‘/p2,  depends 
upon the boundary-layer solution, and so, unlike b,, cannot be obtained from the 

5 FLM 205 
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finite channel theory of $3. Moreover i t  is the small vertical magnetic field KBAg 
which determines the alpha-effect defined by (4.24). It yields 

( 4 . 3 2 ~ )  

From (4.16)-(4.18) and (4.30) we obtain the full mainstream solutions, which 
incorporate all non-interactive boundary-layer corrections into (2.23 a ) ,  in the form 

, parallel case, (4.32 6 )  

which are used to draw the dashed lines in figure 3(a, b).  

4.3. The perpendicular case, BH = i(-) 
In  this case the magnetic potential takes the values 

A M S =  ( n + m ) x  on D,,,w. (4.33) 

Consequently, the value of A at the edge of the channels increases secularly and, over 
the section OP,A increases by 2x. The appropriate solution of ( 2 . 1 ~ )  is therefore 

AMS = + R ( ~ T - ~ ) + A , + ~ T < ~ ,  b = in(, (4.34 a) 

where A ,  is a constant. There is no secular variation of the z-component of the 
magnetic field and the required symmetric solution of (2.lb) is 

BMS = B, ++xC2, 

where B, is a constant. 
The mainstream solutions (4.12) and (4.34) define 

(4.34 b) 

As in the previous case we have the Fourier transforms 

( 4 . 3 6 ~ )  

(4.366) 

As before we equate coefficients in (4.36) and (A 9) to obtain 

a& f 2/8 = 2x, (aT+ 1) Q f 4 8  = +@, d 8 d  = RP,  2 / 8 d r  = -$7Ep2 - B,. (4.37) 

These relations fix the values of the unknown constants inf:, andfc, 

as well as the constant in (4.34b), namely 

B, = - 4 x p ( ~ + 4 r ) .  (4.38b) 
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Continuity of A at u = 4- across < = p implies that the jump in the value of AM' 
defines the magnetic flux a t  that point in the boundary layer. By ( 4 . 3 4 ~ )  it is 

(4.39) 

and use of (4.13), (4.37) and (A 9) yields 

A ,  = -$n((p+4r)? (4.40) 

The results (4.383) and (4.40) complete the mainstream solution (4.34) which 

AMS = +n(~-2)-@[((p+4r)~-[~], BMS = -$[~(/3+4r)-[k2]. (4.41a, b)  

At leading order they reduce to the channel solutions (3.17a) and (3.19b) respectively, 
while the second of ( 4 . 3 8 ~ )  yields the first entry of (2.23b). 

To evaluate the alpha-effect, we note from (2.20) that 

Ria(-) = EOPz = E F p  = E = constant. 

becomes 

(4.42) 

We set E = EMS + EBL, (4.43) 

and evaluate separately the mainstream contribution 

EMS =; (tbMS-BMS)d[ = 9(p+3r)p2, (4.44) 2l 
and the boundary-layer contribution 

(4.45) 

The values of dfiL/dk, 
regular terms in the series expansions (A 9). Together with (4.38) they yield 

and f i L  at k = 0 are given by the coefficients of the 

EBL = arp(p+ar)+y(ar3+4. (4.46) 

The sum of (4.44) and (4.46) gives the final result, 

Ria'-' = 2 r )  (p+ 4r)Z +yA * (4.47 a) 

The leading-order contribution recovers the channel solution ( 3 . 2 3 ~ ) .  Collecting the 
mainstream results we see from (4.41) that the boundary-layer additions to  (2.233) 
yield [Q ,  b,B] = [1/27tp,~~57~,~n(<~--P(p+4r))], perpendicular case, (4.47b) 

which are used to draw the dashed curves in figures 3 (c, d ) .  Note in the case of B that 
the parabola does not meet the axis but rather terminates a t  6 = & p  with the value 

4.4. Error estimates 
The boundary-layer contributions of fBL(c) to our solutions can be obtained by 
inverting the transform offBL(k) defined by (4.13). To evaluate the inversion formula 

- rpt . 

(4.48) 

5-2 
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it is sufficient to  determine the poles of F + ( k ) .  - It leads to  power series expansions of 
the form 

X. Childress and A .  M .  Xoward 

, (4.49a, b )  1 
cc 

C ( f ~ " - " e x p [ ( ( 4 n - 2 ) ~ ) ~ ( - 1 + i ) ~ + c . c . )  (5  > 0), 
n=l  

CCI 

C (f'2")exp [ (4n~); ( l+  i)(J + c.c.) (5 < O ) ,  
n-1 

f BLL(5) = 

where the C.C. denotes complex conjugate and f\") are complex constants linked to 
the residues of F+ - (k). Of course, (4.49) corresponds to the periodic solutions 

i h x u  + ( f 1 + i)  - [ ( A ,  = (87c/m)f) 
A m  I '  (4.50) 

of the heat-conduction equation (2.1 a ) ,  where A(") is a complex constant and A ,  is 
the half-f-period ; the latter measures, a t  fixed c, the [-distance between successive 
zeros of the function. Inside the cat's eyes (5  > 0 ) ,  m is odd reflecting the symmetry 
implied by (2 .5b ) .  The lowest mode (m = 1 )  only repeats itself after one complete 
circuit of the cat's eye (u-period = 8) and has the &lengthscale 

(4.51 a )  

In the channel ( < < O ) ,  m is even in accord with the secularity condition ( 2 . 5 ~ ) .  
The lowest mode (m = 2) repeats itself after traversing one side of the cat's eye (u- 
period = 4) and has the f-lengthscale 

A ,  = (4x)t = 3.545.. . , (channel). (4.51 b )  

Far from the separatrices [ = +p we expect the boundary-layer solutions to be 
dominated by the lowest modes, that is m = 1 in the cat's eyes and m = 2 in the 
channels. This effect is seen most readily from the profile of B in the parallel-field case 
(B, = 8+))  plotted on figure 3 (b) .  Here B comes entirely from the boundary layers on 
the separatrices. The figure clearly shows that the first two zeros of B, on the right 
and left of f = -p  = -6, are separated by distances approximately equal to A , (  x 5.0) 
and A,( x3.5)  respectively. It is also perhaps worth remarking at this point that on 
each of the figures 3(a, b ,  c, d )  the boundary layers near f = -p[p] on the right 
[left] of the graphs correspond to  a u-distance 2[4] from the previous corner a t  Z"[O]. 
Consequently the boundary-layer structures illustrated are more intense near [ = - /3 
than they are near < = p, because of the shorter u-distance from the corner where the 
disturbance is triggered. These remarks also account for the asymmetry of the 
solutions about f = 0. 

Our Wiener-Hopf analysis has relied on the assumption that the boundary layers 
on either side of the primary channel do not interact. According to (4.50) the 
dominant mode (m = 2) decreases by the factor exp ( - 27cp/A,) ( = exp ( -nip) across 
the channel of width 2p. This exponentially small factor is already less than 0.1 for 
the value p = 1.5 mentioned a t  the end of $2. The values of Rfd" obtained by the 
numerical integration of (2.13) and (2.19) together with the corresponding asymptotic 
values determined by ( 4 . 3 2 ~ )  and ( 4 . 4 7 ~ )  are given in table 1 .  We plot their ratio in 
figure 5. The departure from unity in the value of the ratio is consistent with the 
decay factor exp ( - ~$3)  derived above. 

Finally, we remark on the range JuI < L + p used in the numerical integration of 
(2.13) and (2.19). Since the separatrices correspond to u = */3, the value L defines the 
<-length from the channel boundary into the cat's eyes, which is included in the 
integration. At that distance the dominant boundary-layer mode (m = 1) decreases 

A ,  = ( 8 ~ ) ;  = 5.013.. . , (cat's eye). 
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FIGURE 5 .  The ratio of the asymptotic to the numerical values of Rfd" listed in table 1 are 
plotted versus /I. The two sets of results are distinguished by the f labels. 

by the factor e-rrLIAl. For L = 24, the smaller of the two L listed in table 1, this factor 
is very small, z 3  x and is therefore well into the asymptotic regime. 

5. Discussion 
In this paper we have obtained accurate values of the heat flux a t  fixed mean 

temperature gradient, and of the alpha-effect a t  fixed mean magnetic field, due to a 
family of two-dimensional steady Euler flows containing a periodic cat's-eye 
structure. The calculations have been carried out in the limit R + CQ, for arbitrary 
positive 6Ri. The stream function $ given in (1 .1)  is characterized for 6 > 0 by the 
presence of channels which traverse the flow domain, as well as a periodic pattern of 
regions of closed streamlines. To the extent that general steady $ will involve both 
bulk motion as well as 'trapped ' eddies of closed streamlines, the method of analysis 
used here should be applicable to other steady two-dimensional flow fields, although 
the results we have presented depend heavily on the spatial periodicity. The 
boundary-layer limit uses only a few geometric properties of the flow (as in C) so that, 
so long as the vertical velocity component w is a function of $, the analysis near the 
streamsurfaces which separate islands and channels should proceed in a very similar 
way. Of course the connections between channels will determine the complexity of 
the associated boundary-layer problem. Other, more involved, extensions of the 
present work would break the condition that w be a function of $ alone. Within this 
large family of flows the examples treated in the present paper stand out as among 
the simplest ones containing channels, because of the spatial periodicity and the very 
symmetric streamline pattern. 

Applied to the thermal problem, our results show that problem of bulk transport 
a t  small diffusivity can be derived from the small-scale structures where molecular 
diffusivity remains active. We have also shown precisely how the boundary layers 
modify the mainstream solutions associated with zero diffusion. In  the perpendicular 
case, and for the listed values in the range 2 < /3 < 4, the bulk of the flux is carried 
by the channels, but there are still significant boundary-layer corrections. Since 
turbulent flows can diffuse a passive scalar in the limit of zero molecular diffusivity, 
asymptotic methods of this kind are of practical interest. Of course the restriction to 
steady flow precludes any direct relevance to turbulent diffusion, but it is interesting 
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that the product of diffusivities, D(+)D(-) does have a finite limit for large R a t  fixed 
S (the limit being 0(6'), cf. (B4)  and (B6)) .  Such a result could not have been 
anticipated from the solution a t  6 = 1, using (1.25) and (1.27), and cannot be 
computed without the boundary-layer corrections. 

In the magnetic problem the conclusions are similar, but there is the added feature 
of possible fast dynamo activity in the limit of infinite R.  In  a fast kinematic dynamo 
the boundary conditions must preclude external sources of magnetic energy, and the 
magnetic field (i.e. B and gradient of A )  should grow, usually at an exponential rate, 
uniformly in the limit of infinite magnetic Reynolds number. (Of course turbulent 
diffusion, positive or negative, remains an interesting question in the magnetic 
problem, and could be studied with or without an associated dynamo effect.) 

The present results do not provide a conclusive answer concerning the existence or 
non-existence of a fast dynamo for (1.1).  Since our analysis of (1 .1 )  parallels that of 
C for the case p = 0, the present computations of the alpha-effect do have some 
implications for the dynamo problem, as in S for the case of zero p. There, it  was 
argued that the local analysis of the alpha-effect, wherein a uniform mean field is 
assumed, should also apply to a mean field which is periodic in z (and hence 
admissible in the context of kinematic dynamo theory), provided that the wavelength 
in z is large compared to the boundary-layer thickness R-i. If this approach, 
mentioned towards the end of Q 1.4, is assumed to hold for p > 0 then the dispersion 
relation for the mean field will have the form 

p = )(det (a))h-R-'n2, (5.1) 

where n is the wavenumber for the mean field with growth rate p .  Now from ( 4 . 3 2 ~ )  
and ( 4 . 4 7 ~ )  we see that the asymptotic behaviour of det (a )  is, according to local 
theory, 

(5.2) 

Thus we have, for large p, and with the + sign in (5.1), 

K-2det (a )  = a(+)&) = R-1br[P+r+8.1(P+4r)-2]. 

p x K(4Tp/3R)h-R-'n2 (p % 1). (5.3) 

A crucial question is the restriction that must be placed upon n, when p is large, 
to ensure the validity of local theory of the alpha-effect. One obvious limitation is the 
neglect of vertical diffusion in the mainstream channel flow. Solutions of the type 
(3.6) are valid only if the vertical lengthscale is large compared to the boundary-layer 
thickness, n 4 &l.  This means that the unique maximum La2rp of (5.3), which 
occurs when n is of order (Rp); ( % S l ) ,  is unacceptable. For Roberts' case 6 = 0, it 
was shown in S that the vertical advection of z-dependent mean magnetic field was 
the dominant process leading to the failure of the z-independent approximation. For 
our problem the vertical advection of horizontal magnetic field leads to a term like 
K+(aA/az) of order KGnA on the left of (3.1). On forming the consistency condition 
(3.6),  we must, therefore, include a term of order KRSnA,. As a result, for large n, the 
channel solutions are confined to the boundary layers of width order (KRGn)-i in the 
neighbourhood of the separatrices. Neglect of this effect ceases to be valid when this 
width is as narrow as the channel width 8. Hence the upper bound on p imposed by 
the resulting estimate n = O((KRG3)-l) is, by (5.3), of order K ( P / R ) h  (=pi). It 
means that, though increasing the channel width at fixed R strengthens det (a ) ,  the 
upper bound on n decreases such that the product (at least for large p) decreases. 
Therefore, we do not expect fast dynamo action in the limit S fixed, R --f 00. 

It is interesting that the difficulty comes from a factor of ,8 which is missing from 
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(5.1) but present in the thermal problem in det (D) .  The latter quantity is O(p2/R).  
If this estimate were applied to a we would have fast dynamo activity for n = O( 1 ). 

It is also of interest to fit the present results into the general conclusions of Moffatt 
& Proctor (1985). Their results established the importance of an O(R-4) boundary- 
layer scale throughout a domain where a steady flow operates as a fast dynamo. I n  the 
present examples the relevant boundary-layer scales exist, but they are localized to 
the separatrices. I n  effect we might regard the above evidence against fast dynamo 
action as a consequence of this very local boundary-layer structure. 

A separate issue, which involves the artificial device of making S a function of R, 
is the question of fast dynamo action in the limit fixed, R + 00. The answer to this 
question requires a three-dimensional analysis along the lines of the p = O( 1)  theory 
mentioned in the penultimate paragraph of 5 1 .  We may reasonably expect that 
nearly fast dynamos similar to those given in S for 6 = 0 continue to exist and give 
the modes with maximum growth rates when 6 + 0. There is no suggestion that 
modes with significantly faster growth rate can be obtained with non-zero values of 
6. Still, we may speculate that the modification of the flow in the corner regions (or 
some other small modification of the stream function), as proposed in S, can make the 
dynamo fast. 

There is another line of attack, which could possibly use the model of the present 
paper to advantage in the construction of a fast dynamo. This involves abandoning 
the two-dimensionality of the flow by allowing a slow modulation in z. The idea is, 
of course, that three-dimensional steady flows offer easier access to fast dynamo 
action. What we have found in the present paper is a highly anisotropic alpha-effect 
once 6 > 0. Is i t  possible to modulate the direction of optimal regeneration on the 
wavelength of the growing mean field, in such a way that the action persists at 
infinite R ?  Soward & Childress (1986) have made a related proposal using three- 
dimensional flows of a different kind, but having a preferred axis of excitation. For 
a two-dimensional motion such as (1.1) the difficulty is to find a solenoidal three- 
dimensional extension that allows a local two-dimensional analysis of the alpha- 
effect. One possible approach is to introduce a rotation of axes and define a function 

$(x,y,z) =$(xcos8+ysin5, -xsin8+ycos5), 6 = e z , s <  1, (5.4) 

where $ is given by (1.1 b ) .  If we then use 6 in (1.1 a ) ,  the field u fails to  be solenoidal. 
Although a correction of order E is sufficient to remove the contribution to the 
divergence coming from the variation in z, the added term contains secular growth 
in x and y and is therefore unsatisfactory, a difficulty that is avoided by Soward & 
Childress (1986) by the use of a fully three-dimensional flow. By (4.47a), the largest 
induction is O(RcY3) for small 6, which is, for fixed 6, far larger than the 0(1 )  which 
must be the largest possible growth rate for a fast dynamo. We must presume that, 
if a suitable three-dimensional extension of (1.1) could be found, the optimal growth 
rate would necessarily be reduced from this estimate by a factor R-I, The main point 
seems to be that, even though the motion (1.1) is capable of intense excitation in a 
preferred direction (determined by the channel axes), the fast-dynamo issue remains 
just as delicate as in the case of vanishing channels. 
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Appendix A 
Brown & Stewartson (1978) make use of integral representations of the 

Wiener-Hopf decomposition. An alternative method, used in S, is algebraic and 
relies on the identity 

n=i 

The functions F+ - (k) introduced in (4.6) satisfy 

Their analyticity requirements are met by the factorization 

(k-2(2n7~):e-'"/~) (k+2(2n7~)he'"/~) 
(k-2[(2n+ l )~] ;e-~ ' /~)(k+2[(2n-  1) ~]ie '" '~) 

1 
F ( k )  = ___ 

F+( - k) ' 

which also satisfies the boundary conditions at the origin (4.713) and infinity (4.76), 
as explained below. Brown & Stewartson (1978, Appendix A) define via their integral 
formulation the related functions 

ik 1 
K+(w)  = -- - 4 8  1 K-(w)  = -- 

ik F-(k)' 4 8  F+(k) ' 

where w = k/2/2, with the properties 

K-(w)K+(  - w )  = 1, KJO) = K+(O) = 1. 

In addition they introduce the function I ( w )  defined by 

- i l (w)  = +ln [K+(w)K-(w)] ,  (A 5a) 

which by (A 4) is odd in w [I(  -0) = - I ( w ) ] .  It may be used to give an alternative 
representation of K + ( w ) ,  - namely 

-ln[K*(w)] = k i l n  [:2 -tanh (31 - +iZ(o). (A 56) 

We outline briefly how the key properties of F,(k)  are established from the 
definition (A 2). First, K+(O) can be evaluated directly from (A 26) and (A 3) using 
the identity (A 1) with g = +in. Secondly, to evaluate F+(k) as Im (k) + + GO, we set 
k = iq and note that the dominant contribution comes from terms in the infinite 
product having n of order q2. The logarithm of F+ is an infinite sum which may be 
approximated by the integral 
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for large q. This result follows because the integrand vanishes when q 4 ni, and only 
varies slowly as n is increased by unity, when q = O(nt).  Further approximations for 

- C.C. d(2nn)i, 1 1 
large n lead to 

lnF+(iq) !z ain-f Jr[ 
(2nn)t + e-iH/4 

for large positive real values of q. where C.C. denotes complex conjugate. Integration 
gives the result In F+(iq) + 0  as Re ( q )  + + co, which establishes (4.7 b) .  

For our boundary-layer problem only the behaviour of F+ (k) near k = 0 is needed. 
This is readily derived from (A 2) by expressing In [F+(k)] asan infinite sum and then 
expanding each term. This gives Brown & Stewartson’s (1978, equation (A 18)) result 
for I ( w ) .  The first few terms are 

where 
l(k/2/2) = rk+QAk3+O(k5) for llcl 6 1,  (A 6) 

,(l-2:)<($) = -- - 0.241 3196442.. . , (A 7 4  
( - l ) n + i  1 r=- 

(2np n-l (2nn)t 
m ( _ , ) , + I  

(2K)Z ,+, (2.rcn)a 
a ( 1  - 2-i) <(i) = c A = -  = 0.048581 96661.. . , 1 

and <(n) is the Riemann-Zeta function. Since the first term on the right of (A 5 b )  is 
of order k4, we have the result 

K+(k/2/2) - = e-ir(kidz)+O(k4), (A 8) 
where I ( k / 2 / 2 )  is given by (A 6) above.” 

(A 6) and (A 8). It is 
Finally, the asymptotic behaviour of fA+ - andfc+ for small k can be obtained from 

(A 9a) 
Q 

8 4 8  
fA+(k) = - [ a + 2 / 8 + ( a f + 1 ) ( i k ) + O ( k 2 ) ] ,  

1 1 1  
ik 2 

fc (k) = - 2/ 8d [ (ik)z + r - + - r2 + 0 (k)] . 

Appendix B 
We summarize here the application of the present methods to the problem of 

effective transport of a scalar field, as discussed in $ 1 .  To obtain the diffusion 
coefficients D(” defined by (1 .7)  we need only set B = 0 in (1.19) and note the 
relationship (1.12) of BH to  g,. For the parallel (gH = -P) and perpendicular 
(gH = $+)) cases, the boundary-layer theory of $2 thus leads, in place of (2.20), (2.21), 
to the results 

I 

+RGY” - = +E,, ,  = -Bop,,  (B l a )  

where 
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P N L  
0 97 24 
0.5 103 25 
1.0 101 24 
1.5 107 25 
2.0 105 24 
2.5 111 25 
3.0 109 24 
3.5 115 25 
4.0 113 24 

Numerical Asymptotic 

1.065 1.036 
0.7033 0.6825 
0.5143 0.5088 
0.406 1 0.405 6 
0.3370 0.337 2 
0.2884 0.2886 
0.252 2 0.252 2 
0.2240 0.2240 
0.201 4 0.201 4 

Numerical Asymptotic 

1.065 0.8180 
1.783 1.567 
3.146 3.048 
5.506 5.513 
9.168 9.209 

14.36 14.39 
21.29 21.30 
30.20 30.20 
41.33 41.32 

TABLE 2. Numerical and asymptotic solutions for the diffusion coefficients 

As before, the subscripts label the constant values taken on the two primary channel 
sections PP and O P ,  while the upper and lower signs still identify parallel and 
perpendicular respectively. The numerical values listed in table 2 are obtained from 
the result 

(cf. (2.22)). 
The asymptotic results shown in table 2 are easily extracted from the calculations 

of $4 upon replacing E by 8. For the parallel case the crucial modifications emerge 
from (4.20) which becomes 

Hence BA in (4.24) is replaced by b, and so (4.32) is replaced by 

For the perpendicular case (4.44), (4.45) become 

(B 6) giving 

in place of ( 4 . 4 7 ~ ) .  
Finally, we remark that the numerical results quoted in table 2 are based upon the 

same numerical solutions as were used for table 1. The agreement between the 
numerical results and the asymptotic values therefore shows comparable accuracy. 

R$D>'-) = 1 &3+4r)3 + y A  
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